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ABSTRACT

We show that a continuation approach to global optimization with global smoothing tech-
niques can be used to obtain eg-optimal solutions to distance geometry problems. We show
that determining an e-optimal solution is still an NP-hard problem when ¢ is small. A
discrete form of the Gaussian transform is proposed based on the Hermite form of Gaussian
quadrature. We show that the modified transform can be used whenever the transformed
functions cannot be computed analytically. Our numerical results show that the discrete
Gauss transform can be used to obtain e-optimal solutions for general distance geometry
problems, and in particular, to determine the three-dimensional structure of protein frag-

ments.
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1 Introduction

Distance geometry problems arise in the interpretation of NMR data and in the determi-
nation of protein structures. For a general review of the distance geometry problem and its
relationship to macromolecular conformation, see Crippen and Havel [4], Havel [10], Kuntz,
Thomason, and Oshiro [17], and Briinger and Nilges [1].

A distance geometry problem is specified by a subset § of all atom pairs and by the
distances §; ; between atoms 7 and j for (i,7) € S. A solution to the distance geometry

problem is a set of positions #1,...,z,, in R> such that
i = wjll = 6:5,  (5,4) €. (1.1)

Usually, § is sparse; in other words, only a small subset of distances is known.
In practice, lower and upper bounds on the distances are specified instead of their exact
values. The distance geometry problem with lower and upper bounds is to find a set of

positions z1,..., %, such that
lij < i — ij < Ui, (i,7) €S, (1.2)

where [; ; and u; ; are lower and upper bounds on the distance constraints, respectively.

The distance geometry problem (1.1) is computationally intractable in general because
the restriction of the distance geometry problem to a one-dimensional space is equivalent
to the set partition problem, which is known to be NP-complete [6]. Even stronger results
have been obtained showing that k-dimensional distance geometry problems are strongly
NP-hard for all & > 1. For detailed proofs of these results, see Saxe [22] and Crippen
and Havel [4]. One of the purposes of this paper is to study the complexity of solving the
bounded distance geometry problem (1.2).

The distance geometry problem, exact or bounded, can be formulated as a global op-
timization problem. The objective function for the distance geometry problem is defined
so that the constraints are satisfied at a global minimizer of the problem. Special opti-
mization techniques for this class of problems have been developed by Crippen and Havel
[4], Havel [10], Hendrickson [11, 12], Glunt, Hayden, and Raydan [8, 9], and Moré and Wu
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[19]. In particular, Moré and Wu [19] used global smoothing techniques and a continuation
approach to solve distance geometry problems.

We extend the work of Moré and Wu [19], by showing that the global continuation
approach can also be used to obtain e-optimal solutions to the distance geometry problem,

that is, a set of positions x1,...,x,, such that
[l =2l = 5| <2 (L)€, (1.3)

where ¢ is a positive number. An ¢-optimal solution to the distance geometry problem is
all that can be expected in practice, with the choice of ¢ > 0 dictated by the accuracy in
the data. An ec-optimal solution can also be useful when the exact solution does not exist
because of small errors in the data. The latter case can happen, for example, if the triangle
inequality

0i; < bip+ Op

is violated for atoms {1, j, k} because of possible inconsistency in the experimental data.
We study problem (1.3) as a special case of the bounded distance geometry problem
(1.2). Our approach is to formulate problem (1.2) in terms of finding the global minimum

of the function

f)= > hijlei—a)), (1.4)

ijeS
where 2 p , ,
hivj(x):minz{uulfwvo}—I_maxz{uuufw,o}- (1.5)
J 2,7
Clearly, = {21,..., 2} solves problem (1.2) if and only if z is a global minimizer of f

and f(z) =0 (see Crippen and Havel [4]).

In the continuation approach to global optimization an integral transformation is used to
smooth the original function into a function with fewer minimizers. An optimization algo-
rithm is then used to trace the minimizers of the transformed functions back to the original
function. The smoothing transformation was first proposed and studied in the diffusion
equation method for protein conformation by Scheraga and coworkers [21, 14, 15, 16, 23].
Similar transformations have been used in the packet annealing algorithm of Shalloway
[25, 24], and in the algorithms used by Coleman, Shalloway, and Wu [2, 3] for molecular
conformation problems. Recent development of this approach from a mathematical and
computational point of view can be found in Wu [28] and Moré and Wu [19]. A general
review on this approach can also be found in Pardalos, Shalloway, and Xue [20].

A major issue in applying the continuation method to problem (1.2) is that the potential
function (1.4) cannot be transformed analytically. While the function can certainly be
transformed by using standard techniques for numerical integration, the cost of evaluating

the transformed functions would be prohibitive. In this paper we introduce a Gauss-Hermite



discrete transformation that can be evaluated at a reasonable cost and is applicable to a
wide class of functions, including (1.4).

Our main concern is with the determination of e-optimal solutions to the exact distance
geometry problem, that is, vectors € R”™ that satisfy (1.3). Complexity issues are exam-
ined in Section 2, where we show that determining e-optimal solutions to distance geometry
problems is an NP-hard problem when the atoms are restricted to IR.

In Section 3 we define the Gaussian transform and show how the Gaussian transform of
(1.4) can be computed in terms of one-dimensional integrals. We then turn to computational
issues. In particular, Section 4 introduces the discrete Gauss-Hermite transform as an
approximation to the Gaussian transform, while Section 5 contains numerical results for a
continuation method based on this transformation. We consider a set of model distance
geometry problems, as well as the problem of determining the three-dimensional structure
of a 63-atom protein fragment. Although preliminary, these results show that continuation
algorithms based on smoothing techniques can solve these global optimization problems

with a high degree of reliability.

2 Approximate Solutions

The solution of the exact distance geometry problem (1.1) may not exist because, for exam-
ple, the constraints may not be consistent. Even if the constraints are consistent, a small
perturbation may render the constraints inconsistent. Since experimental data is not 100%
accurate, it is quite reasonable to search for approximate solutions to the exact distance
geometry problem.

In this section we analyze the complexity of determining the approximate solution to
the exact distance geometry problem (1.1). Any € R”™ that satisfies (1.3) is an e-optimal
solution to th exact distance geometry problem. We wish to show that if ¢ is small, problem
(1.3) is just as difficult as the original exact distance geometry problem. We prove this result
by restricting all the atoms to lie in IR, and all distances to be positive integers. The result
can be extended to higher dimensions, but we do not pursue these extensions.

Given n positive integers a; € Z*, the standard set partition problem is to find a
partition Sy, S of {1,...,n} such that

Sa=Y a

1€S57 1€S2

This problem is one of the basic NP-hard problems (see Garey and Johnson [6]). We
now generalize this problem by allowing approximate solutions. Given n positive integers

a; € Z* and ¢ > 0, the ¢-set partition problem is to find a partition Sy(e¢), So(e) of



{1,...,n}, and numbers a;(¢) € R such that

la;(e) —a;| <, S oae)— D> aie) <4 (2.1)

i€51(€) 1€52(€)
Clearly, any solution to the standard set partition problem is a solution of the e-set partition
problem for any ¢ > 0. This seems to suggest that the e-set partition problem may be easier
than the standard set partition problem. However, we now show that obtaining a solution

to the e-set partition problem is still NP-hard when ¢ is small.

Theorem 2.1 If a;(¢) € R solves the e-set partition problem and ne < %, then

Y o= ¥

Proof. The triangle inequality and the second inequality in (2.1) show that

Z a; — Z a;| < Z |ai(5)—ai|—|— Z |ai(5)—ai| + %
i€51(€) 1€52(€) 1€51(€) 1€52(€)
Now use the first inequality in (2.1), and recall that Sy, Sy is a partition of {1,...,n} to
obtain that
Z a; — Z a; §n€—|—%<1.
The sums in the above inequality add integers, and thus the sums must be integers. Since
the difference between these two sums is less than one, they must be equal. This is the

desired result. §

An immediate consequence of Theorem 2.1 is that the e-set partition problem is NP-
hard. We now show that determining an e-optimal solution to the distance geometry prob-
lem in R is NP-hard. The proof shows that any e-set partition problem can be directly

reduced to a distance geometry problem with n + 1 atoms in IR.

Theorem 2.2 Determining an c-optimal solution to the distance geometry problem in IR
15 NP-hard.

Proof. Given an instance of the e-set partition problem, consider the distance geometry

problem with n 4+ 1 atoms in R with

biiv1 =a;, 1<i<mn, Oyl = %
If 21,..., 2,41 is an e-optimal solution to this distance geometry problem, then
‘|$2 — Tiy1| — 6i,i+1‘ <e, |21 — @pga| < 1
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In particular, if we define a;(¢) = |#; — ;41], then |a;(¢) — a;] < e. Now note that

n

> (@i — wi41)

=1

= o1 — 2] < 3 (2.2)

and that, if S1(e) = {¢:a; > x41} and So(e) = {¢: @; < @441}, then (2.2) implies that

S lwi—zpa] - D fri -zl < 5

i€S51(€) 1€52(€)

Since a;(¢) = |#; — x;41], we have shown that the a;(¢) solve the e-set partition problem. B

3 Global Smoothing

In the continuation approach to global optimization, the objective function is gradually
transformed into a smoother function with fewer local minimizers. An optimization al-
gorithm is then applied to the transformed function, tracing the minimizers back to the
original function. In this section we define the Gaussian transform and describe some of
the interesting properties of this transformation. The emphasis is on computational con-
siderations; motivation and additional details can be found in Wu [28] and Moré and Wu
[19].

The Gaussian transform depends on a parameter A that controls the degree of smoothing.
The original function is obtained if A = 0, while smoother functions are obtained as A

increases.

Definition 3.1 The Gaussian transform (f)\ of a function f:R" — R is

(foa(z) = ﬁ/ﬁ f(y)exp (—w) dy. (3.1)

The value (f)a(z)is an average of f in a neighborhood of z, with the relative size of this
neighborhood controlled by the parameter A. The size of the neighborhood decreases as A
decreases so that when A = 0, the neighborhood is the center 2. The Gaussian transform

(f)x can also be viewed as the expectation value of f with respect to the Gaussian density

pA(Y) =~ exD Lol
! /2 )\ A2

We could have used other density functions in the definition of the transform, but Gaussian

function

density function has stronger smoothing properties.
In principle the computation of the Gaussian transform requires the evaluation of n-

dimensional integrals, but for many functions that arise in practice, it is possible to compute



the Gaussian transform explicitly, or in terms of one-dimensional integrals. In particular,
if the function is decomposable, that is, if the function f : IR™ — IR can be written in the

form
SO AOEY | ¥EH]
k=1 J=1

for some set of functions {f ;}, where f; : R — R, then a computation shows that

m [ n
(M) =>" (H {(fri)A ) :
k=1 \y=1

Thus, computing (f), for a decomposable function requires the computation of only the
one-dimensional integrals for each (f; ;)x. As we shall see in the next section, we avoid
computing one-dimensional integrals by using special-purpose quadratures.

For the distance geometry problem, as well as for other problems in macromolecular
conformation, we are interested in transforming a class of functions defined in terms of the
distances between pairs of atoms. Given functions h;; : R” — IR of the distance between

atoms ¢ and j, we consider the potential function

= > hijlei— ;). (3.2)
ijeS
where § is some subset of all pairs of atoms, and z; € RP is the position of the i-th atom.
In general we are concerned with three-dimensional problems where p = 3.
The following result of Moré and Wu [19] shows that computing the Gaussian transform

of (3.2) requires only the Gaussian transform of h; ;.
Theorem 3.2 If f: R" — R and h : RP — R are related by
flz) = h(PTa),
for some matriz P € R"P such that PT P = %I, then
() = (h)or(PTa).

Theorem 3.2 reduces the computation of the Gaussian transform of the mapping f, which
is defined on R", to the computation of the Gaussian transform of h, which is defined on

RP. As an application of this result, note that

()a(z) = Z <hi,j>\/§A($i — ;)
i,jeS
is the Gaussian transform of the potential function defined by (3.2). In this case f is defined
on RP", but h; ; is defined on R”.



In some application we can compute the Gaussian transform (h; ;) explicitly. For
example, in the distance geometry problem (1.1), the function h;; : R? — R is of the

general form
h _ 2 62 2
() = (Jlol* - 62)".
This function is decomposable. Moreover, the Gaussian transform is explicitly given by

(h)a(2) = h(x) + [3+ (p = DIN|J2[|* + Fp(p + 2)A" = p6?A%.

For details of this computation see Section 4 of Moré and Wu [19].
The Gaussian transform of the function defined by (1.4) requires a different approach
since the element functions h; ; in (1.4) are not decomposable. The key observation is that

the element functions h; ; in (1.4) are of the general form
hz) = H(||=[]). (3.3)
where H : R — R is given by

2 _ 2 2 _ 2
H(s):minz{ST,O}-l-maxz{s uzu ,0}. (3.4)

We now show that the Gaussian transform of h : R? — R can be reduced to the calculation

of one-dimensional integrals.

Theorem 3.3 Given H: R — R define h: R®> — R by (3.3). If r = ||z|| then

(h)r(z) = ,\;\/ﬂ /OOO sH(s) lexp (— (r ;28)2) — exp (— (r 1_28)2)] ds. (3.5)

Proof. First note that Theorem 3.2 shows, in particular, that (h)x(y) = (h)\(2) for any

vector y such that ||y|| = [|z|]. Thus, without loss of generality, we assume that 2 = (0,0, )

since this simplifies the proof. Now note that the definition of (h)y implies that

(@)= 5572 [l ex (—M) y.

Making a change to spherical coordinates

scosf

Y ssin f ,

SCOos @

and noting that y7z = rscos ¢ when = (0,0, 7), we obtain that

2 S r? 4 g2 78 COS .
(hya(z) = W/o /0 s*H(s) exp (— 32 ) exp <_T@) sin ¢ de ds.
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A computation now shows that

7T rscos@y | A2 2rs 2rs
‘/0 exp { — T Sin QO dg@ = % exp v —exXp | — v )
and this yields the desired result. il

Theorem 3.3 can be used to determine the Gaussian transform of h, but the computa-
tion can be poorly conditioned when r is small. The following result gives an alternative

expression that can be used for small r.

Corollary 3.4 If H:R +— IR and h : R® — R are as in Theorem 3.3, then

i%mh(w) = % /OOO s*H(s)exp (—%) ds.

Proof. Since r = ||z||, the result follows by taking the limit as » — 0 in (3.5). 11

For the general distance geometry problem the function H is defined by (3.4), and thus

‘H is an even function. We now show that Theorem 3.5 can be simplified in this case.

Corollary 3.5 If the mapping H in Theorem 3.3 is an even function, then

(hya(2) = /\\}7?7‘ /_-:o sH(s)exp (— (r ;28)2) ds. (3.6)

Proof. By direct computation,

) = e | [ ereremn (U5 - [ tten (<5 4
= /\\}7?7‘ l/ooo sH(s)exp (— (r ;28) ) ds + /_OOO sH(s)exp (_%) ds]

_ 1 oo (r— 5)2
= /\—\/7?7‘/—00 sH(s)exp (— 32 ) ds.

Interestingly enough, Corollary 3.5 shows that the computation of the Gaussian trans-
form of h when H is an even function reduces to the computation of the transform of the

mapping s — sH(s).
4 Gauss-Hermite Approximation

We consider techniques for the approximation of the Gaussian transform of a function
f : IR — IR. These techniques are useful for the computation of the Gaussian transform of a

decomposable function defined on R”, and for the computation of the Gaussian transform



of the 3n-dimensional potential function (3.2) when the element functions h;; are of the
form (3.3) with  an even function.
The change of variables y = 2 + As in (3.1) shows that the Gaussian transform of a

mapping f : IR — R can be written in the form

Uhier === [ o as) expl—s2) ds. (4.1)

We can certainly compute (f)y\(z) with standard techniques for numerical integration (for
example, an adaptive quadrature), but these techniques usually require a large number of
function evaluations.

Another approach used to evaluate (f),(2) is to approximate f with a linear combination

of functions ¢; whose Gaussian transforms can be obtained analytically. If
fla) =) i),
=1

then the Gaussian transform can be evaluated by

m

(M) = (dia(x).

i=1

This approach was used in [15] for the Lennard-Jones potential with {¢;} a set of Gaussian
functions. The validity of this approach, however, requires the approximation to be valid
over a wide range. Moreover, the approximation must be recalculated if the potential
function changes.

We propose an alternative approach to the approximation of the Gaussian transform
(4.1) based on Gaussian quadrature. This approach mixes elements of the numerical inte-
gration and function approximation approaches, but does not require the calculation of a
different approximation for each application.

Given a positive weight function w : R — R, the Gaussian quadrature formula

[ w3 vt (1.2

— 00

is exact for all polynomials of degree less than 2m. The weights w; are the zeros of the
m-th degree orthogonal polynomial p,, with respect to the weight function w; the nodes
s; are also determined by p,,,. The w-orthogonal polynomials can be generated by a three
term recurrence relationship. For the weight function w(s) = exp(—s?) the w-orthogonal

polynomials are the Hermite polynomials, which are generated by the recurrence

Pr1(x) = xpp(z) — (%k)l)k—l(ﬂc), k>0,

with p_y = 0, and pg = 1. Details about w-orthogonal polynomials for various weight

functions are discussed in standard numerical analysis textbooks, for example, Stoer and



Bulirsch [26] and Kincaid and Cheney [13]. For an advanced treatment of Gaussian quadra-
ture, see Stroud and Secrest [27] and Davis and Rabinowitz [5].

If we use Gaussian quadrature on the integral in (4.1), we obtain an approximation

(Naalz \/—waer/\S) (4.3)

to the Gaussian transform of f, which we call the Gauss-Hermite transform of f. This
terminology is appropriate because (4.3) defines a discrete transformation that shares many
of the properties of the standard Gaussian transform. In particular, note that the Gauss-
Hermite transform coincides with the Gaussian transform if f is a polynomial of degree less
than 2m.

The weights w; and nodes s; in the Gauss-Hermite transform are independent of f and
can be found in the literature (for example, Stroud and Secrest [27]) or can be computed
with the gauss subroutine in ORTHOPOL (Gautschi [7]). The computation of the Gauss-
Hermite transform requires m function evaluations.

We are interested in the use of Gaussian quadratures to approximate integrals of the
form (3.6) where the function i : R — R is given by (3.4). Error bounds for this type of

integrals can be obtained by using the Peano kernel theorem.

Theorem 4.1 Let (f)q ) be the Gauss-Hermite transform of f : R — R. If fU is piecewise

continuous on R for some | < 2m, there is a constant u;, independent of f, such that

(@) = (Faa(@)] < X a(z),

o(x) = {/+Ooexp rf x—l—As)‘z ds}l/z.

— 00

where

Proof. Since Gaussian quadratures are exact for polynomials of degree less than 2m, the

Peano kernel theorem (for example, Davis and Rabinowitz [5, Section 4.3]) shows that

+oo
Uhe) = (Naat@)] <N [ exp(=e) [0 + 29 [t s,
where K is the Peano kernel. Hence,

(@) = (Faa(@)] < X a(z),

where y; = || K|z is the weighted Ly-norm of the kernel. Il

Theorem 4.1 shows that the Gauss-Hermite transform is likely to be a good approxima-
tion to (f), provided A < 1, but that the accuracy is likely to deteriorate if A > 1. This is
not a serious difficulty because for large A the Gauss-Hermite transform is used to guide an

algorithm to a global minimizer, but for small A we work with the original function f.
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We can apply Theorem 4.1 to the mapping f(z) = 2 H(x), where H : R — R is given
by (3.4). In this case, f” is piecewise continuous, and thus Theorem 4.1 applies with k = 2
provided we use m > 1 nodes in the quadrature. Also note that in this case f is a piecewise

polynomial of degree 5, and thus we can expect better results provided we use m > 3 nodes.

5 Numerical Results

We now present an algorithm for determining a solution to the bounded distance geometry
problem (1.2). Our results are restricted to the problem of obtaining e-optimal solutions to
the distance geometry problem. In particular, we present preliminary numerical results on
the determination of the three-dimensional structure of a 63-atom protein fragment with
experimental data provided by Bruce Hendrickson. All computations were done on the
IBM SP parallel system at Argonne National Laboratory with 128 nodes, each node an
IBM RS/6000-370 with 128 Mbytes of memory and 125 Mflops of peak performance.

We attack the bounded distance geometry problem (1.2) by seeking a global minimizer
of the function

flx) =" hijla; —z)), (5.1)
ijeS

z||* - 12, zl|? — u? -
h; j(z) :miHQ{HHlfW,O}—I—maxz{HH%,O}. (5.2)
0]

Ui

where

This function is appropriate for the bounded distance geometry problem because f(z) > 0
for all 2 € R”, and f(z) = 0 if and only if « solves (1.2).
The computation of the Gaussian transform of f follows from the results in Section 3.
Theorem 3.2 shows that
(Iale) = D (hig)ym(zi = 2j).
ijeS
The functions h; ; defined by (5.2) are not decomposable, but in this case Corollary 3.5 is

applicable because

hij(z) = Hi; (||l (5.3)
where
. r?— lij 5 r?— uij
H; ;(r) = min 23 ,0 p + max — 0 (5.4)
27] 27]

is an even function. Hence, Corollary 3.5 shows that

1 oo

(hij) ay(2) = A\/ﬁr/_oo sH ;(s) exp (_(TQ_;) ) ds

— \/1?7‘ /_+Oo(r + \/5/\8)7‘(2'7]‘(7‘ + \/§As) exp (—52) ds,

11



where r = [|z||. In summary, these computations show that

+o0
()= > ﬁlr,,/ (rij + V2Xs)Hi j(ri j + V2As) exp (—52) ds,
ijeS b e

where 7; ; = ||z; — 2;||, is the Gaussian transform of the function defined by (5.1), (5.3),
and (5.4). This expression for the Gaussian transform is valid for any function defined by
(5.1) and (5.3), for any even function H, ;.

We approximate the Gaussian transform with the Gauss-Hermite transform as described

in Section 4. For this problem the Gauss-Hermite transform is

1 &
(Do) = > — > we(rij + V288 He (i + V2)sk). (5.5)
ijeS =
where wy, and sy are the weights and nodes for the Gaussian quadrature, and r; ; = ||z;—z;]|.

We use a simple version of the global continuation algorithm that uses a prespecified

set Ag > Ay > ... > A, = 0 of smoothing parameters.

Algorithm GMIN
Choose a random vector 2o € R™*3 and set fq = +0oc.
for k=0,1,...,p
Determine 2* = loecmin ({f)g,)\,. Zo).
Set g = x*.
If f(2*) < f, then 2, = 2* and f, = f(2¥).
end do

We did not attempt to optimize the choice of smoothing parameters or the starting point

for the local minimization procedure locmin in GMIN. We chose
k
AMe=Xo{l=—], 0<k<p,
P

and the starting point of loemin as the local minimizer found at the previous iteration.
We will show that these choices work remarkably well.

We tested GMIN with Ag > 0, but we also tested GMIN with a choice of A\g = 0,
since for this choice GMIN reduces to the use of locmin on the original function f from
a random starting point. A standard multistart method is obtained if GMIN is used from
a set of randomly generated starting points with Ag = 0.

The choice of local minimization algorithm has to be done with some care because
(f)a,», is not twice continuously differentiable. The Hessian matrix is discontinuous at
points where the argument of H; ; coincides with either /; ; or u; ;. We cannot expect to

avoid these discontinuities, in particular, if /; ; or u; ; are close. We used the variable-metric

12



Table 5.1: Results for the model problem, ¢ = 0.1

Ao | m=064, r=16

m =125, r =25

m =216, r = 36

m =343, r =49

1 70%

30%

60%

40%

0 0%

0%

0%

0%

limited-memory code VMLM in MINPACK-2, which is an implementation of the Liu and
Nocedal [18] algorithm.

In our numerical results we consider GMIN to be successful from a starting point zq if
x* satisfies

[l =l = 82, <e8?y, ()€, (5.6)

for a given ¢ > 0. This termination test may not be appropriate in practice because smaller

distances tend to be determined more accurately. We used GMIN with

In general, ¢ = 0.1 is a reasonable value, but we also tested GMIN with smaller .
We first tested the algorithm with the model distance geometry problem constructed
by Moré and Wu [19]. In this problem the molecule has m = s atoms located in the

three-dimensional lattice

{(il, iz, 23) :

0§i1<8,0§i2<8,0§i3<8}

for some integer s > 1. The problem is to determine the structure of this molecule if we are
given 0; ; € S, where

S=107): li=jl <7},

and r is an integer between 1 and m.

Numerical results for this problem are presented in Table 5.1. We used molecules with
(m,r) = (s°,5%), where 4 < s < 7. For each problem, we ran GMIN from 10 randomly
chosen starting points with Ag = 1 and p = 20 for continuation. The results show that the
continuation method found the e-optimal solutions to the problems successfully. On the
other hand, the multistart method failed to find a solution in all cases.

We also tested GMIN with a 63-atom protein fragment. For this problem, 236 pairwise
distances are specified. Hendrickson [11] showed that the molecule with this set of distance
data is nearly rigid and difficult to determine. Our numerical results confirm this finding.

We ran GMIN from 100 starting points for ¢ = 0.01,0.02,0.04,0.06,0.08,0.1. In all

cases we set A\g = 1 and p = 20 for continuation. The results from these experiments,

13



Table 5.2: Results for the 63-atom protein fragment

Ag | e=01|e=02|ec=.04]|e=.06|e=.08]e=.10
1 0% 4% 30% 69% 76% 96%
0 0% 0% 8% 23% 40% 66%

given in Table 5.2, clearly show that the problem becomes harder as ¢ is decreased. The

continuation method failed for ¢ = 0.01, but was successful for all other larger values of . If

compared with the multistart method, note that the continuation method has a significantly

higher probability of success.
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